Spinal Cord Stimulation, Implanted

Applies to AZ, HI, MO, NJ and SC only.

Policy Number: HS-115

Original Effective Date: 7/16/2009

Revised Date(s): 7/28/2010; 8/2/2011; 6/7/2012; 8/9/2013

Disclaimer

The Clinical Coverage Guideline is intended to supplement certain standard WellCare benefit plans. The terms of a member’s particular Benefit Plan, Evidence of Coverage, Certificate of Coverage, etc., may differ significantly from this Coverage Position. For example, a member’s benefit plan may contain specific exclusions related to the topic addressed in this Clinical Coverage Guideline. When a conflict exists between the two documents, the Member’s Benefit Plan always supersedes the information contained in the Clinical Coverage Guideline. Additionally, Clinical Coverage Guidelines relate exclusively to the administration of health benefit plans and are NOT recommendations for treatment, nor should they be used as treatment guidelines. The application of the Clinical Coverage Guideline is subject to the benefit determinations set forth by the Centers for Medicare and Medicaid Services (CMS) National and Local Coverage Determinations and state-specific Medicaid mandates, if any. Note: The lines of business (LOB) are subject to change without notice; consult www.wellcare.com/Providers/CCGs for list of current LOBs.

Application Statement

The application of the Clinical Coverage Guideline is subject to the benefit determinations set forth by the Centers for Medicare and Medicaid Services (CMS) National and Local Coverage Determinations and state-specific Medicaid mandates, if any.
BACKGROUND

American Association of Neurological Surgeons (2008)

Spinal cord stimulation (SCS) is a pain relief technique that delivers a low-voltage electrical current continuously to the spinal cord to block the sensation of pain. SCS is the most commonly used implantable neurostimulation technology for management of pain syndromes. SCS is a widely accepted FDA-approved medical treatment for chronic pain of the trunk and limbs (back, legs and arms). Three SCS device types include:

- Conventional systems require little effort on the patient’s part for maintenance. However, a minor surgical procedure is required to replace the power source when it runs out.
- Radiofrequency systems are designed to sustain therapy over long periods at the highest output level. Because of its high power capabilities, the RF system is suitable for the most challenging cases in which there is complex, multi-extremity pain. With this type of system, the patient must wear an external power source to activate stimulation.
- Rechargeable systems are the newest type of SCS device. The patient is responsible for recharging the power source when it runs low. A rechargeable system typically lasts longer than a conventional system. Eventually a minor surgical procedure may be required to replace the power source if the time between recharges becomes impractical.

Patients being considered for SCS should ideally meet the following criteria:

- Pain is not associated with malignancy
- Poor response to conservative treatment for a minimum of six months
- Revision surgery not an option or would have a low chance of success
- No pacemaker or other medical contraindications
- No major psychiatric disorders, including somatization
- Willingness to stop inappropriate drug use prior to implantation
- No related litigation
- Ability to give informed consent for the procedure

If a member is a suitable candidate for SCS, often the first step is to implant a device on a trial basis. During the trial phase, a lead or leads are implanted temporarily and are connected to a trial spinal cord stimulator. The trial stimulator is programmed with one or more stimulation programs customized to the specific areas of the member’s pain. The trial phase can be beneficial for the following reasons:

- Allows member/provider to analyze whether SCS effectively relieves pain
- Provides member/provider with assessment period to determine which type of SCS technology works best
- Enables the member/provider to evaluate different stimulation settings and programs

If the SCS trial provides adequate pain relief, then a permanent system may be implanted. SCS is a reversible therapy, so even though it is called permanent, treatment can be discontinued at any time and the implanted parts turned off or removed.

Neurological Treatment Uses for SCS include: Arachnoiditis, Complex Regional Pain Syndrome (CRPS), Failed-Back Surgery Syndrome (FBSS), Post-Laminectomy Syndrome (lumbar or cervical), or Nerve Damage, Neuropathy or Neuritis.

Neuropathic pain is generated and perpetuated by the nervous system itself, without any ongoing stimuli from injury. Examples of this type of pain include diabetic neuropathy, postherpetic neuralgia, phantom limb pain, trigeminal neuralgia, failed back surgery syndrome (FBSS), and complex regional pain syndrome (CRPS) Type I. In
most cases, neuropathic pain responds poorly to standard pharmacological and surgical therapies, can last indefinitely with an increasing severity over time, and often results in severe disability. Spinal cord stimulation (SCS) for the treatment of neuropathic pain involves surgical implantation of electrodes in the epidural space. In theory, passage of electrical currents through the spinal column disrupts the transmission of pain signals in stimulated spinal nerves and may activate pain inhibitory mechanisms. After a trial period to ensure that SCS provides sufficient pain relief, an adjustable, battery-powered pulse generator is implanted surgically and connected to the electrodes. This assessment focuses primarily on neuropathic pain associated with FBSS and on CRPS Type 1. (Hayes, 2009).

Temporary Percutaneous Electrode Placement

During the first phase of the spinal cord stimulation (SCS) implantation procedure, a local anesthetic is given, and an electrode unit is inserted via a Tuohy needle into the epidural space. Fluoroscopy is used to guide the placement of electrodes to the desired level in the spinal column so that paresthesias will cover the anatomical region that is the source of neuropathic pain. For the next 1 to 3 days, extensive testing with the temporary electrode is performed to measure effectiveness and determine adequate positioning. Some members are released from the hospital on the second day and permitted to test the temporary unit at home for a period of 2 days to several months. After a report of at least 50% reduction in pain, the member is returned to surgery for implantation of a permanent pulse generator.

Permanent Electrode Placement and Implantation of the Pulse Generator

During the second phase of the SCS implantation procedure, permanent electrode placement is performed in a surgical suite under a combination of local anesthetic and intravenous sedation. The member is kept awake during the procedure to help guide electrode placement and to ensure that SCS provides adequate paresthetic coverage over the affected area. Internalization of the SCS unit is preceded by the connection of the lead to an extension wire tunneled subcutaneously to an implantable pulse generator, which is inserted in a surgically prepared subcutaneous pocket in the abdominal wall. Electrodes may be implanted percutaneously, but those implanted via laminotomy or minilaminectomy generally result in fewer technical problems (e.g., lead migration), exhibit superior paresthesia coverage, and require half the power expenditure. After implantation and an x-ray to confirm the position of the electrode, members are discharged from the hospital; however, they return to an outpatient clinic for suture removal after the incisions are sufficiently healed (Hayes, 2009).

POSITION STATEMENT

Applies to AZ, HI, MO, NJ and SC only.

Spinal cord stimulation of the dorsal column is considered medically necessary for the relief of chronic (greater than six months) intractable pain caused by the following conditions:

- Lumbosacral arachnoiditis that has not responded to medical management including physical therapy (NOTE: Presence of arachnoiditis is usually documented by presence of high levels of proteins in the cerebrospinal fluid and/or by myelography or magnetic Resonance Imaging); OR,
- Post-surgical or post-traumatic nerve root injuries, including post-laminectomy syndrome (failed back surgery syndrome [FBSS]); OR,
- Complex regional pain syndrome I and II; OR,
- Phantom limb syndrome that has not responded to medical management; OR,
- End-stage peripheral vascular disease, when the member cannot undergo revascularization or when
revascularization has failed to relieve painful symptoms and the pain has not responded to medical management; OR,
- Post-herpetic neuralgia; OR,
- Plexopathy; OR,
- Intercostal neuralgia that did not respond to medical management and nerve blocks; OR,
- Cauda equine injury; OR,
- Incomplete spinal cord injury.

Spinal cord stimulation of the dorsal column is considered medically necessary for the relief of chronic intractable pain caused by the above conditions if ALL of the following criteria are met (CMS, 1995):
- The implantation is used as a last resort for members with chronic intractable pain; AND,
- Other treatment modalities (pharmacological, surgical, physical) have been tried for a minimum of six months and did not prove satisfactory or are considered unsuitable or contraindicated for the given member; AND,
- Further surgical intervention is not indicated; AND,
- Psychological evaluation has been obtained and there is documentation clearly stating the pain is not psychologic in origin; AND,
- No contraindications to implantation exist such as sepsis or coagulopathy; AND,
- There has been a clear demonstration of pain relief (50% reduction) on a 3 to 7 day trial with a temporarily implanted electrode preceding permanent implantation.

Per CMS (2012), Local Coverage Determinations for Hawaii and South Carolina specify that reimbursement is allowed for placement of a maximum of 2 leads or 16 “contacts”, and for 2 SCS trials per anatomic spinal region per patient per lifetime. If a trial fails, a repeat trial is not appropriate unless there are extenuating circumstances that lead to trial failure. Appropriate medical documentation to support a repeat trial can be sent on appeal.

Coding

Covered CPT® Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63650</td>
<td>Percutaneous implantation of neurostimulator electrode array, epidural</td>
</tr>
<tr>
<td>63655</td>
<td>Laminectomy for implantation of neurostimulator electrodes, plate/paddle, epidural</td>
</tr>
<tr>
<td>63661</td>
<td>Removal of spinal neurostimulator electrode percutaneous array(s), including fluoroscopy, when performed</td>
</tr>
<tr>
<td>63662</td>
<td>Removal of spinal neurostimulator electrode plate/paddle(s) placed via laminotomy or laminctomy, including fluoroscopy, when performed</td>
</tr>
<tr>
<td>63663</td>
<td>Revision including replace, when performed, of spinal neurostimulator electrode percutaneous array(s), including fluoroscopy, when performed</td>
</tr>
<tr>
<td>63664</td>
<td>Revision including replacement, when performed, of spinal neurostimulator electrode plate/paddle(s) placed via laminotomy or laminctomy, including fluoroscopy, when performed</td>
</tr>
<tr>
<td>63685</td>
<td>Insertion or replacement of spinal neurostimulator pulse generator or receiver, direct or inductive coupling</td>
</tr>
<tr>
<td>63688</td>
<td>Revision or removal of implanted spinal neurostimulator pulse generator or receiver</td>
</tr>
<tr>
<td>95970</td>
<td>Electronic analysis of implanted neurostimulator pulse generator system (eg, rate, pulse amplitude and duration, configuration of wave form, battery status, electrode selectability, output modulation, cycling, impedance and patient compliance measurements); simple or complex brain, spinal cord, or peripheral (i.e., cranial nerve, peripheral nerve, autonomic nerve, neuromuscular) neurostimulator pulse generator/transmitter, without reprogramming</td>
</tr>
<tr>
<td>95971</td>
<td>Electronic analysis of implanted neurostimulator pulse generator system (eg, rate, pulse amplitude and duration, configuration of wave form, battery status, electrode selectability, output modulation, cycling, impedance and patient compliance measurements); simple spinal cord, or peripheral (i.e., peripheral nerve, autonomic nerve, neuromuscular) neurostimulator pulse generator/transmitter, with intraoperative or subsequent programming</td>
</tr>
</tbody>
</table>
95972 Electronic analysis of implanted neurostimulator pulse generator system (e.g., rate, pulse amplitude and duration, configuration of wave form, battery status, electrode selectability, output modulation, cycling, impedance and patient compliance measurements); complex spinal cord, or peripheral (except cranial nerve) neurostimulator pulse generator/transmitter, with intraoperative or subsequent programming, first hour.

95973+ Electronic analysis of implanted neurostimulator pulse generator system (e.g., rate, pulse amplitude and duration, configuration of wave form, battery status, electrode selectability, output modulation, cycling, impedance and patient compliance measurements); complex spinal cord, or peripheral (except cranial nerve) neurostimulator pulse generator/transmitter, with intraoperative or subsequent programming, each additional 30 minutes after first hour. +List separately in addition to code for primary procedure, i.e. Use 95973 in conjunction with 95972.

95980 Electronic analysis of implanted neurostimulator pulse generator system (e.g., pulse amplitude and duration, configuration of wave form, battery status, electrode selectability, output modulation, cycling, impedance and patient measurements) gastric neurostimulator pulse generator/transmitter; intraoperative with programming.

95981 Electronic analysis of implanted neurostimulator pulse generator system (e.g., pulse amplitude and duration, configuration of wave form, battery status, electrode selectability, output modulation, cycling, impedance and patient measurements) gastric neurostimulator pulse generator/transmitter; subsequent, without reprogramming.

95982 Electronic analysis of implanted neurostimulator pulse generator system (e.g., pulse amplitude and duration, configuration of wave form, battery status, electrode selectability, output modulation, cycling, impedance and patient measurements) gastric neurostimulator pulse generator/transmitter; subsequent, with reprogramming.

Note: 63660 deleted for 2010. To Report, see 63661 – 63664.

Covered HCPCS Codes
C1767 Generator, neurostimulator (implantable), non-rechargeable
C1778 Lead, neurostimulator (implantable)
C1787 Patient programmer, neurostimulator
L8680 Implantable neurostimulator electrode, each
L8681 Patient programmer (external) for use with implantable programmable neurostimulator pulse generator
L8682 Implantable neurostimulator radiofrequency receiver
L8683 Radiofrequency transmitter (external) for use with implantable neurostimulator radiofrequency receiver
L8685 Implantable neurostimulator pulse generator, single array, rechargeable, includes extension
L8686 Implantable neurostimulator pulse generator, single array, non-rechargeable, includes extension
L8687 Implantable neurostimulator pulse generator, dual array, rechargeable, includes extension
L8688 Implantable neurostimulator pulse generator, dual array, non-rechargeable, includes extension
L8689 External recharging system for implanted neurostimulator, replacement only
L8695 External recharging system for battery (external) for use with implantable neurostimulator

ICD-9-CM Procedure Codes
03.93 Implantation or replacement of spinal neurostimulator lead(s)
03.94 Removal of spinal neurostimulator lead(s)
84.59 Insertion of other spinal devices
86.94 Insertion or replacement of single array neurostimulator pulse generator; not specified as rechargeable; Pulse generator (single array, single channel) Spinal
86.95 Insertion or replacement of dual array neurostimulator pulse generator; not specified as rechargeable; Pulse generator (dual array; dual channel) Spinal
SPINAL CORD STIMULATION, IMPLANTED

HS-115

DRAFT 2013 ICD-10-PCS Codes

00HU3MZ M/S, CNS, Insertion, spinal canal, percutaneous, neurostimulator lead
00PU3MZ M/S, CNS, Removal, spinal canal, percutaneous, neurostimulator lead
0JH63BZ - 0JH63EZ M/S, Subcutaneous, Insertion, percutaneous, Stimulator Generator, Single/Multiple Array
0JH63MZ M/S, Subcutaneous, Insertion, percutaneous, Stimulator Generator
00WU3MZ M/S, CNS, Revision, percutaneous, Neurostimulator lead

Covered ICD-9-CM Diagnosis Codes

Primary Diagnosis Code
338.18 Other acute postoperative pain; postoperative pain unspecified
338.21 Chronic pain due to trauma
338.22 Chronic post-thoracotomy pain
338.28 Other chronic postoperative pain
338.29 Other chronic pain

Secondary Diagnosis Codes

053.12 Postherpetic trigeminal neuralgia
053.19 Postherpetic intercostal neuralgia
337.20 Complex regional pain syndrome (CRPS) Type1; Reflex sympathetic dystrophy, Unspecified
337.21 Complex regional pain syndrome (CRPS) Type1; Reflex sympathetic dystrophy; Upper Limb
337.22 Complex regional pain syndrome (CRPS) Type1; Reflex sympathetic dystrophy; Lower Limb
337.29 Complex regional pain syndrome (CRPS) Type1; Reflex sympathetic dystrophy; Other Specified Site
344.60 Cauda equina syndrome
350.1 Trigeminal neuralgia
353.0 Nerve root and Plexus disorders; Brachial Plexus lesions
353.1 Nerve root and Plexus disorders; Lumbosacral plexus lesions
353.5 Neuralgic amyotrophy; (Code the underlying disease first, i.e. DM)
353.6 Phantom limb syndrome
353.8 Intercostal neuralgia
354.4 Complex regional pain syndrome (CRPS) Type 2; Causalgia of upper limb
355.71 Complex regional pain syndrome (CRPS) Type 2; Causalgia of lower limb
443.81 Peripheral vascular disease (PVD) in diseases classified elsewhere; (Code the underlying disease first, i.e. DM)
443.89 Other Specified Peripheral Vascular Disease (PVD)
722.81 Postlaminectomy syndrome; Cervical region
722.82 Postlaminectomy syndrome; Thoracic region
722.83 Postlaminectomy syndrome; Lumbar region
952.04 Incomplete Spinal Cord Injury / Lesion C1 – C4 level; NOS; with posterior cord syndrome
952.09 Incomplete Spinal Cord Injury / Lesion C5 – C7 level; NOS; with posterior cord syndrome
952.14 Incomplete Spinal Cord Injury / Lesion T1 – T6 level; NOS; with posterior cord syndrome
952.19 Incomplete Spinal Cord Injury / Lesion T7 – T12 level; NOS; with posterior cord syndrome

Covered Draft 2013 ICD-10-CM Diagnosis Codes

Primary Diagnosis Code
G89.21 Chronic pain due to trauma
G89.22 Chronic post-thoracotomy pain
G89.28 Other chronic postprocedural pain
G89.29 Other chronic pain

Secondary Diagnosis Code
B02.22 Postherpetic trigeminal neuralgia
Other postherpetic nervous system involvement
- Trigeminal neuralgia
- Brachial plexus disorder
- Lumbosacral plexus disorders
- Neuralgic amyotrophy
- Phantom limb syndrome
- Other nerve root and plexus disorders
- Causalgia of upper limb (CRPS II)
- Causalgia of lower limb (CRPS II)
- Cauda equina syndrome
- Complex regional pain syndrome I (CRPS I)
- Other specified peripheral vascular diseases
- Postlaminectomy syndrome, not elsewhere classified
- Other incomplete lesions of cervical spinal cord
- Other incomplete lesions of thoracic spinal cord

REFERENCES

Peer Reviewed

Government Agencies, Professional and Medical Organizations

MEDICAL POLICY COMMITTEE HISTORY AND REVISIONS

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/9/2013</td>
<td>Reinstated for markets where CareCore is not a vendor.</td>
</tr>
<tr>
<td>6/7/2012</td>
<td>Retired by MPC. Covered under InterQual criteria.</td>
</tr>
<tr>
<td>12/1/2011</td>
<td>New template design approved by MPC.</td>
</tr>
<tr>
<td>8/2/2011</td>
<td>Approved by MPC. No changes.</td>
</tr>
</tbody>
</table>